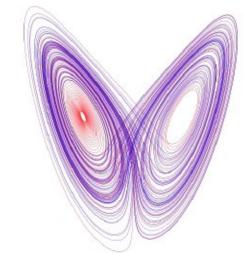
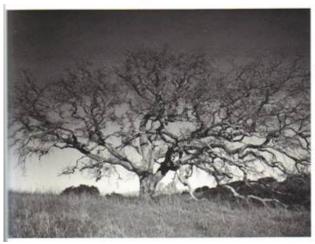
# Data-driven Modeling, Prediction and Predictability: The Complex Systems Framework

Surja Sharma, Erin Lynch and Eugenia Kalnay University of Maryland, College Park

> V. Krishnamurthy George Mason University, Fairfax





GSFC AI Workshop Nov. 2018



# Nonlinear Dynamics and Complexity

```
(Lorenz, 1963)
Dynamics
  Deterministic dynamics, Chaos
  Quantitative results
  Weak connection with data
Structure
            (Mandelbrot, 1977)
  Real objects in nature
       (Trees, clouds, coastline, etc.)
  Fractals and Multifractals
Dynamics + Structure
  Spatio-temporal Dynamics
  Data-driven modeling in Complex
  Systems Framework
Machine Learning / Artificial
  Intelligence
```





# Reconstruction of Dynamics

## "Geometry from a time series"

(Packard et al., 1980)

## Embedding theorem (Takens, 1981)

Time series data: x(t)

Time-delay embedding:

$$x_k(t_i) = x(t_i + (k-1)\tau)$$

Reconstructed space:

$$X_i = \{x_1(t_i), x_2(t_i), x_3(t_i), ...\}$$

Time series data

Reconstructed

(Broomhead and King, J. Phys. A, 1986)

Actual

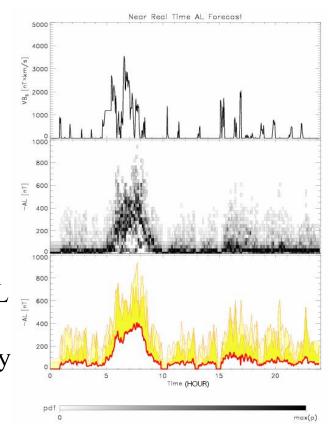
## Complex Systems Framework:

- Low-dimensional (data-driven) modeling
- Dynamical prediction (Dynamics)
- Predictability analysis (Statistics)

# Space Weather: Prediction and Predictability

## Data-driven Modeling:

Phase space reconstruction of driver (solar wind) – response (magnetosphere)


- Storms (Dst)
- Substorms (AL)
- Killer electron flux

First Predictions
[Sharma, Rev. Geophys., 1995]
Early contributions to
AI / Machine Learning

Solar wind (VBs)

Past data: auroral electrojet index AL

Predicted AL and Predictability

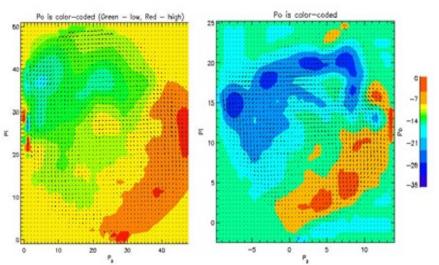


[Ukhorskiy et al., 2002, 2004].

# Predictability of Space Weather

# Global or Coherent aspects of the Magnetosphere

#### Demonstrated by


- Low-dimensionality reconstruction of phase space [Vassiliadis et al., 1990; Sharma et al., 1993]
- Modeling [Baker et al., 1990]
- Phenomenology [Siscoe, 1991]
- Phase transition-like behavior from datadriven modeling and MHD simulations

### implies Predictability

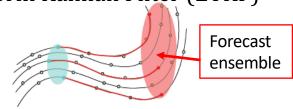
Fundamental contribution based on data-driven modeling (AI / Machine Learning)

Similar to early results on dynamical behavior of the atmosphere

### Magnetospheric Transitions: Phase Transition-like Behavior



From vBs-AL Index Data Sitnov et al., JGR, 2000; Phys. Rev. E, 2001.


From vBs-Pseudo AL Index: Global MHD simulations Shao et al., JGR, 2003

Transition from higher (orange) to lower (green) level.

AL index data – observed and from global MHD simulations.

# Extreme events and Ensemble forecasting

- Data-driven models without governing equations
- Forecasts using Ensemble Transform Kalman Filter (ETKF)



 Ensemble spread as an indicator of extreme events





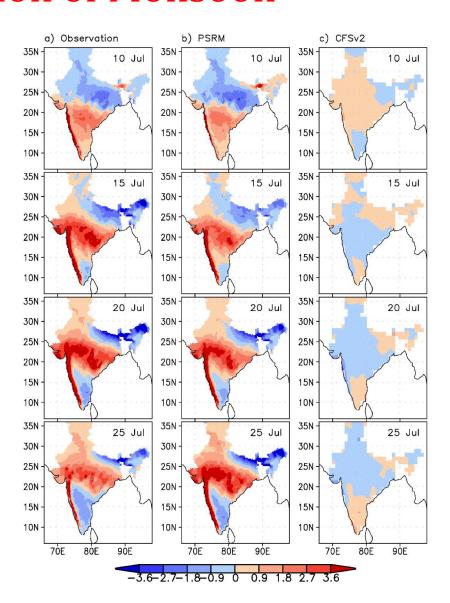




Erin Lynch, Ph. D. thesis (2018)

## Data-driven Prediction of Monsoon

Phase space reconstruction model (PSRM).


Rainfall data on 0.25 deg longitude × 0.25 deg latitude grid for 1901-2009 (1800 stations)

Climate Forecasting System (CFSv2 )
State of the art numerical model (NOAA )

Modeling by Reconstruction using Rainfall and CFSv2 data.

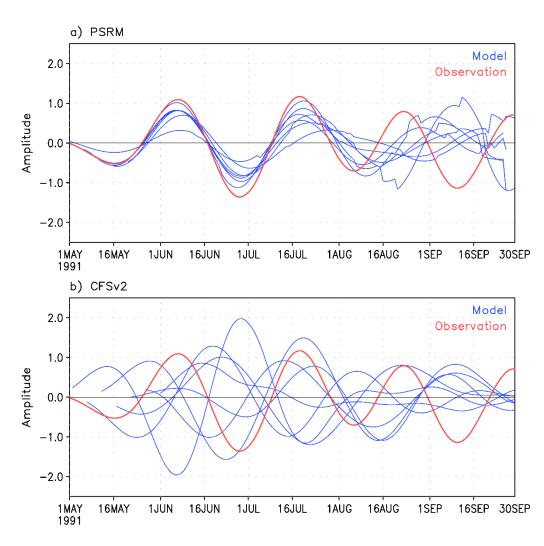
Improvement of predictability

Krishnamurthy and Sharma, Geophys. Res. Lett. (2017)



## Comparison of predictions of PSRM and CFSv2

#### Key results and conclusions:


Intraseasonal oscillations are predictable

Predictability of intraseasonal phenomena such as MJO and midlatude processes

Data-driven modeling provides higher predictability

Modeling and prediction of spatio-temporal structure of space weather

Spatio-temporal Data: Networks of monitoring stations



Krishnamurthy and Sharma, Geophys. Res. Lett., 2017

# **Complex Systems Framework**

- Data-driven Modeling
- Dynamical prediction (global and spatially extended)
- Characterization of predictability
- > Extreme events: Quantification of predictability
- > Predictability of extreme events from Big Data
- Quantitative measure of the likelihood of extreme space weather events (data-driven modeling)
- Prediction of Intraseasonal climate (Indian Monsoon)
- Applications and a framework for artificial intelligence, and machine learning
- Fourth paradigm Data –enabled science

11/29/18